
Practical Optimization: a Gentle Introduction John W. Chinneck, 2001
http://www.sce.carleton.ca/faculty/chinneck/po.html

1

Chapter 10: Network Flow Programming

Linear programming, that amazingly useful technique, is about to resurface: many network
problems are actually just special forms of linear programs! This includes, for example:

• the transportation problem,
• the transshipment problem,
• the assignment problem,
• the maximum flow and minimum cut problem,
• the minimum spanning tree problem,
• the shortest route problem,
• etc.

We will see in this chapter how these problems can be cast as linear programs, and how the
solutions to the original problems can be recovered. We will also see that there are specialized
algorithms that can solve network linear programs many times faster than if they are solved by
the general-purpose simplex method. Formulating and solving network problems via linear
programming is called network flow programming.

Any network flow problem can be cast as a minimum-cost network flow program. A min-cost
network flow program has the following characteristics.

Variables. The unknown flows in the arcs, the xi, are the variables.

Flow conservation at the nodes. The total flow into a node equals the total flow out of a node,
as shown in Figure 10.1(a) for example. It makes things easier later if we follow the convention
of writing the flow conservation equation at a node as:

0
inflowsoutflows

=− ∑∑ xx jj

Source and sink nodes. Some nodes are connections to the environment surrounding the
network. At these entryway nodes, there may be a net gain of flow into the network (source
node), or a net loss of flow out of the network (sink node). To emphasize that flow conservation
still holds at source and sink nodes, a dashed “phantom” arc can be shown on the network
diagram. The phantom arc will be an inflow for a source node, and an outflow for a sink node.
See the examples in Figures 10.1(b) and 10.1(c).

Now we use a similar convention for writing the flow conservation equation at the source or sink
node:

bxx ijj =− ∑∑
inflowsoutflows

Practical Optimization: a Gentle Introduction John W. C
http://www.sce.carleton.ca/faculty/chinneck/po.html

When written this way, bi is a positive constant for a source
node, and a negative constant for a sink node. The
magnitude of bi is the amount of flow in the phantom source
or sink arc. Note also that the relationship may not be an
equality relationship: inequalities are common for sources
and sinks. For example, the flow of water exiting a supply
network must be at least 100 liters per minute, or the flow of
oil entering a refinery network must not exceed 10,000
barrels per day.

When all of the flow conservation equations (or inequalities)
are written following the outflows – inflows convention, it is
easy to see what type of node is associated with each
relationship by looking at the value of the right hand side
constant. The constant will be zero for a simple flow
conserving node, positive for a source node, and negative for
a sink node.

Bounds on the arc flows. There may be upper and lower
bounds on the flows in the arcs (i.e. the variables in the
model. xj ≥ bj is a lower bound on an arc flow, and xj ≤ bj is
an upper bound on an arc flow. For example, the maximum
flow of water through a particular pipe is limited because of
the pipe diameter and interior roughness, so an upper bound
is applied: xj ≤ 25 l/sec.

Upper bounds are easy to understand, but why might there be
a nonzero lower bound? This might represent the minimum
required production rate at a factory (e.g. 250 vehicles per
day required at the output arc of an automobile plant) or a
minimum flow rate through steam piping to prevent
condensation.

The default arc flow bounds are a lower bound of zero and
no upper bound. It is not unusual for almost all of the arcs
default bounds, with only a few arcs having specified upper or
the “edges” of the network, representing, say, upper limits on t
into the network and lower limits on the production the rat
network.

Some modeling systems will allow a negative lower bound on
don’t do this! The meaning of a negative flow is a backwards f
destroys the best feature of a network model, the intuitive unde
gain by looking at the network diagram. You expect the flows
by the arrowheads, but the arrowheads may lie if you permit
ways to accommodate two-way flow, if necessary, such as
between two nodes.

a

b

c

d

 c + d - a - b = e

 (b) source node

a

b

c

d

 c + d - a - b = e

 (c) sink node

a

b

c

d

 c + d - a - b = 0

(a) flow conserving node

e

e

Figure 10.1: Flow
conservation at nodes.
hinneck, 2001 2

in a network model to have the
 lower bounds, typically those at
he rates of raw materials flowing
e at the main outflow from the

an arc flow. My strong advice is
low in the arc. This immediately
rstanding of the system that you
to follow the directions indicated
negative flows. There are other
pairing oppositely oriented arcs

Practical Optimization: a Gentle Introduction John W. Chinneck, 2001
http://www.sce.carleton.ca/faculty/chinneck/po.html

3

Cost per unit of flow. There is a cost per unit of flow, cj, associated with each arc. In many
network models, the cost per unit of flow is zero for most of the arcs, with costs being typically
associated with arcs at the “edges” of the network. The default value of cj is zero.

Objective function. In a minimum cost network flow problem, the objective is to find the
values of the variables (the xj) that minimize the total cost of the flows over the network:

∑
arcs

jj xcminimize

Of course, the solution must respect all of the constraints: flow conservation at the nodes, and the
upper and lower flow bounds on the arcs.

As we will see in the remainder of this chapter, an astonishing array of network problems can be
cast as minimum cost network flow programs.

From Network Diagram to Linear Program

A huge attraction of network models is the immediate intuitive understanding provided by the
diagram. In fact, given a properly labeled diagram, the conversion to a minimum cost network
flow linear program is automatic. There are some commercial modeling systems that support
this direct conversion.

There are three parameters associated with each arc: the lower flow bound, the upper flow
bound, and the cost per unit of flow. The arc labeling convention that we will use shows a triple
of numbers in square brackets, [l, u, c]. l is the lower bound on the flow in the arc, with a default
value of zero if not explicitly specified; u is the upper bound on the flow in the arc, with a default
value of infinity if not explicitly specified; c is the cost per unit of flow in the arc, with a default
value of zero if not explicitly specified. For example, an arc having a lower flow bound of zero,
and upper flow bound of 25, and a cost per unit of flow of $6 would be labeled [0, 25, 6].

Source and sink node behavior is controlled by the label on the phantom arc associated with the
node. If the upper and lower flow bounds on the phantom arc are identical, then the node
relationship is an equation, but if the upper and flow bounds on the arc differ, then the node
relationship is an inequality.

Consider the network diagram in Figure 10.2 for example. The phantom arcs on the 3 source
and sink nodes are fully labeled. Node A is a source of up to 12 units of flow at a cost of $5 per
unit of flow. Node C is a sink of up to 4 units of flow at an income of $6 per unit of flow – the
negative cost per unit of flow means income. Node D is a sink of exactly 8 units of flow, but
with no cost or income associated with that flow. The remaining arcs are also labeled following
the convention. Note that arc 4 has a positive lower bound.

Given the fully labeled diagram, writing the associated linear program is a mechanical process:
write the minimum cost objective function, then the node conservation equations, the arc flow
bounds, and the nonnegativity constraints. The linear program constraints associated with Figure
10.2 are:

Practical Optimization: a Gent
http://www.sce.carleton.ca/faculty/chinneck/po.html

 node A: x1 + x2 + x3 ≤ 12

 node B: x4 − x1 = 0

 node C: x5 – x2 ≥ -4

 node D: –x3 – x4 – x5 = -8

 flow bound arc 2: x2 ≤ 6

flow bound arc 3: x3 ≤ 3

flow bound arc 4: x4 ≥ 4

nonnegativity: x1, x2, x3, x4, x5 ≥ 0

The minimum cost objective function can be written as:

 minimize 5A – 6C + 2.5x3 + 3.7x4 + 0.5x5

where A and C represent the nonnegative flows in the phantom arcs associated with nodes A and
C. But those two variables are not needed because the phantom arc flows can be rewritten in
terms of the other flows incident on (i.e. touching) the associated nodes, as follows:

 A = x1 + x2 + x3 and C = x5 – x2

These relationships are substituted into the objective function to remove the variables A and C
from the model entirely. The final version of the objective function is then:

 minimize 5x1 – x2 + 7.5x3 + 3.7x4 – 5.5x5

As we have seen, the network
diagram contains all the
information needed to derive an
associated linear programming
model via a straightforward
mechanical writing of the
constraints and objective
function. For this reason, we
will assume from here onward
that a properly labeled network
diagram is the formulation.

The linear programming version
of the network model has some
very interesting properties. Look
at the left hand sides of all of the co
are either 0, +1, or –1. This is bec
flows, and the remainder of the co
important consequences.

The most important consequence is
solution consist of simple addition a

0]

]

, inf, 0.5]

A

B

arc 2 [0, 6, 0]

[0, 12, 5]

[8, 8,

arc 1
[0, inf, 0]

C

D

[0, 4, -6

arc 3 [0, 3, 2.5]

arc 4 [4, inf, 3.7]

arc 5 [0

Figure 10.2: A fully labeled network diagram.
le Introduction John W. Chinneck, 2001

4

nstraints. What do you notice? All of the coefficients there
ause all of the node relationships are simple summations of
nstraints are simple bounds. But this fact has some very

 that all of the pivot steps during the linear programming
nd subtraction: there is no need for multiplication. Now this

Practical Optimization: a Gent
http://www.sce.carleton.ca/faculty/chinneck/po.html

doesn’t seem very dramatic, but at the very least it eliminates floating-point computer operations
in favor of much faster arithmetic operations.

But it gets better: those simple addition/subtraction operations can actually be replaced by
logical operations in a different solution algorithm known as the network simplex method, which
can be hundreds of times faster than the ordinary simplex method when applied to a network
problem. In fact, the solution times for networks are so much faster than regular linear programs
that some sophisticated linear programming solvers will scan the LP for network portions. If it
finds that parts of the LP are in network form, it has a way of solving those portions separately
using the fast network simplex method, and then tying the solution back into the rest of the linear
program in an iterative manner. Overall solution time is reduced in this way.

The second important consequence is this: if all of the constraint right hand side values are
integers (as in our example), and if all of the pivot operations are simple additions and
subtractions, then we can guarantee that the solution values of the variables at the optimum will
also all be integers. This is known as the unimodularity property. This is extremely useful in
solving certain types of integer programming problems, such as assignment problems. Most
integer programming problems must be solved using much slower solution algorithms, so it is
very fortunate that a fast technique such as linear programming can be used on some problems.

The Transportation Problem

The transportation problem is
simple in form, but surprisingly
useful in practice. It consists of a
set of sources of some product
(e.g. factories producing canned
vegetables), which are directly
linked to sinks of the product
(e.g. markets in various cities
which buy the canned
vegetables). Each link has an
associated cost per unit of flow
(e.g. cost per delivered truckload
in this case).

Consider the example in Figure
10.3, which has three factories
(A, B, and C) shipping to three
markets (D, E, and F). The “transp
(factories) to the sinks (markets); th
lower flow bounds are all at the def
of infinity.

The question in this case is: how m
and shipped to each sink to meet the

[0, 3, 0]

A

B

C

D

E

F

(3)

(1)

(4)
(2)

(4)

(3)
(3)

[0, 5, 0]

[0, 3, 0]

[3, 3, 0]

[3, 3, 0]

[3, 3, 0]

Figure 10.3: A simple transportation model. The transportation
arcs are labeled with the cost per unit of flow.
le Introduction John W. Chinneck, 2001

5

ortation arcs” are the arcs which directly connect the sources
ese are labeled only with the cost per unit of flow because the
ault of zero, and the upper flow bounds are all at the default

any truckloads per day should be produced at each factory
 market demands at minimum total cost? After solution, the

Practical Optimization: a Gentle Introduction John W. Chinneck, 2001
http://www.sce.carleton.ca/faculty/chinneck/po.html

6

flows in the transportation arcs will be known; hence the number of truckloads to ship from each
factory to each market will be known.

It’s always good to give a network model of this type a simple “idiot test” at first glance. In
Figure 10.3 we see that the factories can produce up to a total of 11 units of flow while the
markets demand exactly nine units of flow. This model passes the idiot test: there is sufficient
supply to meet the demand. Of course, the model may fail for other reasons, e.g. the demand at a
particular market cannot be met from the supply available to it. The linear programming solver
will detect any of these problems, and appropriate infeasibility analysis routines can be brought
into play.

The Assignment Problem

The assignment problem is a classic that also appears in the integer programming literature. In
the usual form of the problem, you need to assign a set of people to a set of tasks. Each person
takes a certain number of minutes to do a certain task, or cannot do a particular task at all, and
each person can be assigned to exactly one task. How should the people be assigned to the tasks
to minimize the total time taken to do all of the tasks?

The data for an assignment problem is often collected in a table, as shown below for example.
The number in each cell indicates the number of minutes required for a particular person to do a
particular task. The notation “n.a.” in a cell indicates that the associated person cannot do the
task associated with the cell. It’s not obvious how to assign the people to the tasks by simple
inspection of the table. For example, you may try looking at each task and simply choosing the
best person for that task. But as you can see, person A is the best for tasks 2, 3, and 4. How
should the tie be broken? Other ad hoc procedures also soon run into trouble. A more organized
approach is needed.

 task 1 task 2 task 3 task 4
person A n.a. 9 7 13
person B 16 13 8 n.a.
person C 10 n.a. 6 15
person D 11 n.a. 13 17

Surprisingly, the assignment problem can be cast as a transportation problem! Each person is
modeled as a source node which introduces exactly one unit of flow into the network, and each
task is modeled as a sink node which removes exactly one unit of flow from the network, as
shown in Figure 10.4. Each arc has the default upper and lower flow bounds, but the cost per
unit of flow is set equal to the number of minutes for the person to do the job. To avoid diagram
clutter, each arc is labeled only with the cost per unit of flow.

After the solution of the resulting network linear program, the flows in the arcs (i.e. the values of
the variables in the linear program) will be known. The flow in any arc will be exactly zero or
exactly one. Why? Isn’t it possible to send fractional units of flow and still satisfy all of the
source and sink relationships? It’s because (i) the unimodularity property restricts the arc flows
to integer values because all of the node equations have integer constants, and (ii) the sources
and sink nodes in the model all have inflows or outflows of exactly one unit of flow. Given this,

Practical
http://www.sce

the optimal set of assignments is shown by the arcs that have a positive flow. Each positive-flow
arc indicates a person-to-task assignment that should be made. The objective function value
gives the minimum total time associated with this assignment.

A straight
than jobs.
flow, by la

The Tra

This is a
allowed.
flow cons
transporta
labeled tra
acts as a t
D and E a

The Sho

Believe it
be cast a
network fl
interpretin

• Cr
[1, 1, 0]

[1, 1, 0]

[1, 1, 0]

[1, 1, 0]

[1, 1, 0]

[1, 1, 0]

[1, 1, 0]

[1, 1, 0]

A

B

C

D

1

2

3

4

9

7 13

16

13
8

10

6

15

11
13

17

Figure 10.4: The assignment problem cast as a transportation network.
 Optimization: a Gentle Introduction John W. Chinneck, 2001
.carleton.ca/faculty/chinneck/po.html

7

forward variation of the assignment problem is the case in which there are more people
 This is easy to handle simply by making each person the source of up to one unit of
beling the phantom arc associated with each person as [0,1,0].

nsshipment Problem

variation on the transportation problem in which shipping via intermediate nodes is
In other words, not all of the nodes in the model are sources or sinks; some are simple
erving nodes. In addition, the sources and sinks may also transship flow. As in the
tion model, the nodes are assumed to have the default flow bounds. A simple, partially
nsshipment network is illustrated in Figure 10.5. Node B is a source node that also

ransshipment node, node G is a sink node that also acts as a transshipment node, nodes
re pure transshipment nodes.

rtest Route Problem

or not, the shortest route problem, previously solved via Dijkstra’s algorithm, can also
s a minimum cost network flow program, and therefore solved by extremely fast
ow programming codes. It’s just a matter of properly labeling the nodes and arcs and
g the LP solution. Here are the main points of the problem setup:

eate the network diagram,

Practical
http://www.sce.

• Label each arc with a lower flow bound of zero, an upper flow bound of infinity, and a
cost per unit flow equal to the length of the arc. For example, an arc with a length of 12
kilometers would be labelled [0, ∞, 12].

• Make the origin node a source of exactly one unit of flow, with no cost per unit of flow.
The label on the phantom arc should be [1,1,0].

• Make the destination node a sink of exactly one unit of flow, with no cost per unit of
flow. The label on the phantom arc should be [1,1,0].

The LP so
a positive f
will be exa
network fl
hence the n
of the limi
be either 0
“cheapest”
flow at the

So there’s
route probl

The Sho

This is rela
(if not all)
shortest ro
and solving
there is a s

Again, it’s
Let’s assum
A

B

C

D

E

F

G

H

Figure 10.5: An unlabeled transshipment network.
Optimization: a Gentle Introduction John W. Chinneck, 2001
carleton.ca/faculty/chinneck/po.html

8

lution will assign flow to some arcs in the network, but not to other arcs. Arcs having
low will be on the shortest route. In fact, if an arc has a positive flow, the flow value
ctly one unit. Why? Because of the unimodularity property discussed earlier! It’s a
ow value in which all of the node equations have integer right hand side constants,
etwork flows will all be integer. But the integers can’t be any bigger than 1 because

tations placed on the single source node and the single sink node, so all arc flows will
 or 1. And because of the minimum cost objective function, the LP will choose the
 (i.e. shortest) route to connect the input flow at the origin source node to the output
 destination sink node.

no need to write or find an implementation of Dijkstra’s algorithm to solve a shortest
em when you have a linear programming solver at hand.

rtest Route Tree Problem

ted to the shortest route problem, except that there is a single origin node, and many
 of the other nodes in the network are destination nodes. The problem is to find the
ute from the origin node to every one of the destination nodes. Of course, setting up
 one shortest route problem for every destination node in the network can do this, but

impler method that solves all of the shortest route problems simultaneously.

 just a matter of properly labeling the nodes and arcs and interpreting the LP solution.
e that there are n destination nodes. Here are the main points of the problem setup:

Practical Optimization: a Gentle Introduction John W. Chinneck, 2001
http://www.sce.carleton.ca/faculty/chinneck/po.html

9

• Create the network diagram,

• Label each arc with a lower flow bound of zero, an upper flow bound of infinity, and a
cost per unit flow equal to the length of the arc. For example, an arc with a length of 12
kilometers would be labelled [0, ∞, 12].

• Make the origin node a source of exactly n units of flow, with no cost per unit of flow.
The label on the phantom arc should be [n, n, 0].

• Make each destination node a sink of exactly one unit of flow, with no cost per unit of
flow. The label on the phantom arc for each destination node should be [1,1,0].

Just as in the shortest route problem, the unimodularity property will permit only integer
amounts of flow in an arc. Some arcs will have no flow, and some will have a flow equal to
some positive integer less than or equal to n, the maximum amount of flow introduced at the
origin node. If you mark the arcs that have a positive flow, then the marked arcs will form a tree
on the diagram. The shortest route from the origin to each destination node is actually
discovered backwards: trace the route from the destination node back to the origin via marked
nodes. Because the marked arcs form a tree, there is only one shortest route for each destination
node. The routes to several destination nodes may share an arc, which is why the flow in some
arcs may be greater than one.

The Maximum Flow and Minimum Cut Problem

This problem too can be solved by proper formulation as a minimum cost network flow model.
The main points of the problem setup:

• Create the network diagram,

• Label each arc with a lower flow bound of zero, the upper flow bound associated with the
arc, and a cost per unit flow of zero. For example, an arc with an upper flow bound of 25
litres per minute would be labelled [0, 25, 0].

• Make the origin node a possible source of a very large volume of flow, with no cost per
unit of flow. The label on the phantom arc should be [0, M, 0], where M represents a
very large number.

• Make each destination node a possible sink of a very large volume of flow, with a cost
per unit of flow of -1. The label on the phantom arc for the destination node should be
[0, M, -1], where M again represents a very large number.

Now what is the effect of this strange labeling? Consider the destination node: it has a cost per
unit of flow of –1. Since the objective function will automatically attempt to minimize costs, it
will try to get as much flow as possible out via the destination node in order to drive the cost
function as negative as possible. This is just like attaching a giant vacuum cleaner to the
destination node, which attempts to suck as much flow as it can out of the network. At the other
end, the origin node will certainly permit a very large volume of flow to enter the network.
However, what limits the total flow is the upper flow bounds on the arc, just as it did in the Ford
and Fulkerson algorithm we looked at earlier.

Practical Optimization: a Gentle Introduction John W. Chinneck, 2001
http://www.sce.carleton.ca/faculty/chinneck/po.html

10

Thus, the minimum cost network flow solution will provide the following information:

• The flow out of the network at the destination node is the maximum total flow through
the network.

• The flows in the arcs show a flow pattern that will provide this maximum flow. As usual,
there may be other flow patterns that provide the same total flow.

The minimum cut is found in exactly the same way as it was after solving the maximum flow
problem via the Ford and Fulkerson algorithm: mark the arcs that are full to capacity, then find a
cut that uses only marked arcs.

A final question: what value should the M in the origin and destination nodes be set at? It should
be a value that is at least as big as the maximum flow, but as small as possible to avoid any
numerical problems in the computer solution. An easy way to find a suitable value is to take the
cut-value for any random cut in the network diagram, because we know by the max-flow/min-cut
theorem that the cut value will be greater than or equal to the maximum flow in the network.

Generalized Networks

In a generalized network, the arcs have gain factors. This is a number that multiplies the flow
entering an arc to yield the flow leaving the arc. If all of the gain factors on all of the arcs are
equal to 1, then this is a normal network. Using gain factors allows you to model a wider range
of phenomena. For example, a gain factor of 0.9 might apply to a leaky pipe in a water network
that loses 10% of its flow. Can you think of a reason for having a gain factor that is greater than
1? Obviously this represents an increase in the amount of flow leaving the arc as compared to
the amount of flow entering the arc.

I asked this question to a graduate class some years back. They thought for a while and finally a
student ventured an answer: “Suppose the flow represented chickens being transported to market,
and meanwhile the chickens were laying eggs and they were hatching, thereby creating more
chickens…”. Creative answer. More realistically, a gain factor greater than 1 might be applied
when the flow represents the value of an item, the arc represents the transportation of the item
between two locations, and the item is worth more on arrival in the destination location.

Gain factors of zero are not allowed. Negative gain factors are allowed, but are not a good idea
because they have the effect of reversing the flow at the head end of the arc, which destroys the
intuitive meaning associated with the network diagram itself.

There are specialized fast networks for solving networks with side constraints.

Networks with Side Constraints

Sometimes the model is almost completely a network, but there are additional constraints that
simply cannot be expressed as network relationships. For example, you may need to add a
constraint like 13x1 – 0.5x2 + 12x3 ≥ 10 to your network model. It’s easy to see that this is not a
network constraint in this case because the coefficients are not all +1 or –1. In a case like this
you have a network with side constraints.

Practical Optimization: a Gentle Introduc
http://www.sce.carleton.ca/faculty/chinneck/po.html

Networks with side constraints can of course be solved as ordinary general linear programs, but
this sacrifices the solution speed that can be achieved for network models. Fortunately, there are
specialized solution methods for networks with side constraints, which are quite fast. In fact,
smart solvers will scan a model to see if it has network portions, and if it does, it may apply such
specialized solvers. Some of the specialized solution algorithms work by solving the network
portions by the fast network solution algorithms and then stitching the network portion together
with the non-network portion. This is done numerous times in an iterative manner until the
solutions for the two portions converge.

Processing Networks

Processing networks are extremely useful for modeling engineering systems, such as flows
through factories. A processing network has regular nodes (constrained only by the usual
conservation of flow), and at least one processing node in which the flows in the incident arcs
are further constrained to have fixed proportions of flows relative to each other. For example, a
processing node representing the energy flows in a large industrial boiler is shown in Figure
10.6. The numbers in the figure represent the fixed proportions of the energy flows. As you can
see, the boiler is 80% efficient.

Processing nodes are shown as small squares
on a network diagram to distinguish them
from regular nodes, which are shown as small
circles. If there are k incident arcs, then a
processing node is represented by k-1 ratio
equations. For example, the processing node
in Figure 10.6 is completely represented by
the following 3 ratio equations:

a/b = 1/0.01 ⇒ 0.01a – b = 0

a/c = 1/0.21 ⇒ 0.21a – c = 0

a/d = 1/0.8 ⇒ 0.8a – d = 0

A complete model of a processing network is
assembled by writing appropriate ratio equation
conservation equations for the regular nodes. T
network flow objective function completes the m

As you can see, a processing network is nothing
because of the ratio equations generated by the
for networks with side constraints can then be use

In a flow-conserving processing network the sum
outflow proportions. For example, in Figure 10.
outflow proportions. This guarantees flow will b
there are many cases where flow conservation
across the various flows incident on a processin
Figure 10.7. Here, the inflow proportions sum

1.00

0.01
0.21

0.80

a: fuel

b: heated
water

c: exhaust gas

d: steam

Figure 10.6: Processing node representation of an
industrial boiler.
tion John W. Chinneck, 2001 11

s for each processing node along with the flow
hen the usual flow bounds and minimum cost

odel.

more than a network with side constraints added
processing nodes. The fast solution algorithms
d.

 of the inflow proportions equals the sum of the
6, the inflow proportions sum to 1.01, as do the
e conserved in the processing node. However,
will not hold, especially when the units differ
g node, as in an assembly model as shown in

 to 6, while the outflow proportions sum to 1.

Practical Optimizatio
http://www.sce.carleton.ca/faculty/ch

However, this still simply defines a network model with side constraints, and so it can be solved
by the usual methods.

As you have seen in this chapter, network models are incredibly versatile modeling tools with an
appealing intuitive mapping to the system under study.

1

4 1

1 chassis

wheels

car

engine

Figure 10.7: Processing node representation of an
automobile assembly process
n: a Gentle Introduction John W. Chinneck, 2001
inneck/po.html

12

	Chapter 10: Network Flow Programming
	From Network Diagram to Linear Program
	The Transportation Problem
	The Assignment Problem
	The Transshipment Problem
	The Shortest Route Problem
	The Shortest Route Tree Problem
	The Maximum Flow and Minimum Cut Problem
	Generalized Networks
	Networks with Side Constraints
	Processing Networks

