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Chapter 10: Network Flow Programming 

Linear programming, that amazingly useful technique, is about to resurface: many network 
problems are actually just special forms of linear programs!  This includes, for example: 

• the transportation problem, 
• the transshipment problem, 
• the assignment problem, 
• the maximum flow and minimum cut problem, 
• the minimum spanning tree problem, 
• the shortest route problem, 
• etc. 

We will see in this chapter how these problems can be cast as linear programs, and how the 
solutions to the original problems can be recovered.  We will also see that there are specialized 
algorithms that can solve network linear programs many times faster than if they are solved by 
the general-purpose simplex method.  Formulating and solving network problems via linear 
programming is called network flow programming. 

Any network flow problem can be cast as a minimum-cost network flow program.  A min-cost 
network flow program has the following characteristics. 

Variables.  The unknown flows in the arcs, the xi, are the variables. 

Flow conservation at the nodes.  The total flow into a node equals the total flow out of a node, 
as shown in Figure 10.1(a) for example.  It makes things easier later if we follow the convention 
of writing the flow conservation equation at a node as: 

0
inflowsoutflows

=− ∑∑ xx jj  

Source and sink nodes.  Some nodes are connections to the environment surrounding the 
network.  At these entryway nodes, there may be a net gain of flow into the network (source 
node), or a net loss of flow out of the network (sink node).  To emphasize that flow conservation 
still holds at source and sink nodes, a dashed “phantom” arc can be shown on the network 
diagram.  The phantom arc will be an inflow for a source node, and an outflow for a sink node.  
See the examples in Figures 10.1(b) and 10.1(c). 

Now we use a similar convention for writing the flow conservation equation at the source or sink 
node: 

bxx ijj =− ∑∑
inflowsoutflows

 



Practical Optimization: a Gentle Introduction    John W. C
http://www.sce.carleton.ca/faculty/chinneck/po.html  

When written this way, bi is a positive constant for a source 
node, and a negative constant for a sink node.  The 
magnitude of bi is the amount of flow in the phantom source 
or sink arc.  Note also that the relationship may not be an 
equality relationship: inequalities are common for sources 
and sinks.  For example, the flow of water exiting a supply 
network must be at least 100 liters per minute, or the flow of 
oil entering a refinery network must not exceed 10,000 
barrels per day. 

When all of the flow conservation equations (or inequalities) 
are written following the outflows – inflows convention, it is 
easy to see what type of node is associated with each 
relationship by looking at the value of the right hand side 
constant.  The constant will be zero for a simple flow 
conserving node, positive for a source node, and negative for 
a sink node. 

Bounds on the arc flows.  There may be upper and lower 
bounds on the flows in the arcs (i.e. the variables in the 
model.  xj ≥ bj is a lower bound on an arc flow, and xj ≤ bj is 
an upper bound on an arc flow.  For example, the maximum 
flow of water through a particular pipe is limited because of 
the pipe diameter and interior roughness, so an upper bound 
is applied: xj ≤ 25 l/sec. 

Upper bounds are easy to understand, but why might there be 
a nonzero lower bound?  This might represent the minimum 
required production rate at a factory (e.g. 250 vehicles per 
day required at the output arc of an automobile plant) or a 
minimum flow rate through steam piping to prevent 
condensation. 

The default arc flow bounds are a lower bound of zero and 
no upper bound.  It is not unusual for almost all of the arcs 
default bounds, with only a few arcs having specified upper or
the “edges” of the network, representing, say, upper limits on t
into the network and lower limits on the production the rat
network. 

Some modeling systems will allow a negative lower bound on 
don’t do this!  The meaning of a negative flow is a backwards f
destroys the best feature of a network model, the intuitive unde
gain by looking at the network diagram.  You expect the flows 
by the arrowheads, but the arrowheads may lie if you permit 
ways to accommodate two-way flow, if necessary, such as 
between two nodes. 
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Cost per unit of flow.  There is a cost per unit of flow, cj, associated with each arc.  In many 
network models, the cost per unit of flow is zero for most of the arcs, with costs being typically 
associated with arcs at the “edges” of the network.  The default value of cj is zero. 

Objective function.  In a minimum cost network flow problem, the objective is to find the 
values of the variables (the xj) that minimize the total cost of the flows over the network: 

∑
arcs

jj xcminimize  

Of course, the solution must respect all of the constraints: flow conservation at the nodes, and the 
upper and lower flow bounds on the arcs. 

As we will see in the remainder of this chapter, an astonishing array of network problems can be 
cast as minimum cost network flow programs. 

From Network Diagram to Linear Program 

A huge attraction of network models is the immediate intuitive understanding provided by the 
diagram.  In fact, given a properly labeled diagram, the conversion to a minimum cost network 
flow linear program is automatic.  There are some commercial modeling systems that support 
this direct conversion. 

There are three parameters associated with each arc: the lower flow bound, the upper flow 
bound, and the cost per unit of flow.  The arc labeling convention that we will use shows a triple 
of numbers in square brackets, [l, u, c].  l is the lower bound on the flow in the arc, with a default 
value of zero if not explicitly specified; u is the upper bound on the flow in the arc, with a default 
value of infinity if not explicitly specified; c is the cost per unit of flow in the arc, with a default 
value of zero if not explicitly specified.  For example, an arc having a lower flow bound of zero, 
and upper flow bound of 25, and a cost per unit of flow of $6 would be labeled [0, 25, 6]. 

Source and sink node behavior is controlled by the label on the phantom arc associated with the 
node.  If the upper and lower flow bounds on the phantom arc are identical, then the node 
relationship is an equation, but if the upper and flow bounds on the arc differ, then the node 
relationship is an inequality. 

Consider the network diagram in Figure 10.2 for example.  The phantom arcs on the 3 source 
and sink nodes are fully labeled.  Node A is a source of up to 12 units of flow at a cost of $5 per 
unit of flow.  Node C is a sink of up to 4 units of flow at an income of $6 per unit of flow – the 
negative cost per unit of flow means income.  Node D is a sink of exactly 8 units of flow, but 
with no cost or income associated with that flow.  The remaining arcs are also labeled following 
the convention.  Note that arc 4 has a positive lower bound. 

Given the fully labeled diagram, writing the associated linear program is a mechanical process: 
write the minimum cost objective function, then the node conservation equations, the arc flow 
bounds, and the nonnegativity constraints.  The linear program constraints associated with Figure 
10.2 are: 
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 node A:  x1 + x2 + x3 ≤ 12 

 node B:  x4 − x1 = 0 

 node C:  x5 – x2 ≥ -4 

 node D:  –x3 – x4 – x5 = -8 

 flow bound arc 2: x2 ≤ 6 

flow bound arc 3: x3 ≤ 3 

flow bound arc 4: x4 ≥ 4 

nonnegativity:  x1, x2, x3, x4, x5 ≥ 0 

The minimum cost objective function can be written as: 

 minimize 5A – 6C + 2.5x3 + 3.7x4 + 0.5x5 

where A and C represent the nonnegative flows in the phantom arcs associated with nodes A and 
C.  But those two variables are not needed because the phantom arc flows can be rewritten in 
terms of the other flows incident on (i.e. touching) the associated nodes, as follows: 

 A = x1 + x2 + x3 and C = x5 – x2  

These relationships are substituted into the objective function to remove the variables A and C 
from the model entirely.  The final version of the objective function is then: 

 minimize 5x1 – x2 + 7.5x3 + 3.7x4 – 5.5x5 

As we have seen, the network 
diagram contains all the 
information needed to derive an 
associated linear programming 
model via a straightforward 
mechanical writing of the 
constraints and objective 
function.  For this reason, we 
will assume from here onward 
that a properly labeled network 
diagram is the formulation. 

The linear programming version 
of the network model has some 
very interesting properties.  Look 
at the left hand sides of all of the co
are either 0, +1, or –1.  This is bec
flows, and the remainder of the co
important consequences.   

The most important consequence is
solution consist of simple addition a
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Figure 10.2: A fully labeled network diagram.
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doesn’t seem very dramatic, but at the very least it eliminates floating-point computer operations 
in favor of much faster arithmetic operations. 

But it gets better: those simple addition/subtraction operations can actually be replaced by 
logical operations in a different solution algorithm known as the network simplex method, which 
can be hundreds of times faster than the ordinary simplex method when applied to a network 
problem.  In fact, the solution times for networks are so much faster than regular linear programs 
that some sophisticated linear programming solvers will scan the LP for network portions.  If it 
finds that parts of the LP are in network form, it has a way of solving those portions separately 
using the fast network simplex method, and then tying the solution back into the rest of the linear 
program in an iterative manner.  Overall solution time is reduced in this way. 

The second important consequence is this: if all of the constraint right hand side values are 
integers (as in our example), and if all of the pivot operations are simple additions and 
subtractions, then we can guarantee that the solution values of the variables at the optimum will 
also all be integers.  This is known as the unimodularity property.  This is extremely useful in 
solving certain types of integer programming problems, such as assignment problems.  Most 
integer programming problems must be solved using much slower solution algorithms, so it is 
very fortunate that a fast technique such as linear programming can be used on some problems. 

The Transportation Problem 

The transportation problem is 
simple in form, but surprisingly 
useful in practice.  It consists of a 
set of sources of some product 
(e.g. factories producing canned 
vegetables), which are directly 
linked to sinks of the product 
(e.g. markets in various cities 
which buy the canned 
vegetables).   Each link has an 
associated cost per unit of flow 
(e.g. cost per delivered truckload 
in this case).   

Consider the example in Figure 
10.3, which has three factories 
(A, B, and C) shipping to three 
markets (D, E, and F).  The “transp
(factories) to the sinks (markets); th
lower flow bounds are all at the def
of infinity.   

The question in this case is: how m
and shipped to each sink to meet the
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 market demands at minimum total cost?  After solution, the 
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flows in the transportation arcs will be known; hence the number of truckloads to ship from each 
factory to each market will be known. 

It’s always good to give a network model of this type a simple “idiot test” at first glance.  In 
Figure 10.3 we see that the factories can produce up to a total of 11 units of flow while the 
markets demand exactly nine units of flow.  This model passes the idiot test: there is sufficient 
supply to meet the demand.  Of course, the model may fail for other reasons, e.g. the demand at a 
particular market cannot be met from the supply available to it.  The linear programming solver 
will detect any of these problems, and appropriate infeasibility analysis routines can be brought 
into play. 

The Assignment Problem 

The assignment problem is a classic that also appears in the integer programming literature.  In 
the usual form of the problem, you need to assign a set of people to a set of tasks.  Each person 
takes a certain number of minutes to do a certain task, or cannot do a particular task at all, and 
each person can be assigned to exactly one task.  How should the people be assigned to the tasks 
to minimize the total time taken to do all of the tasks? 

The data for an assignment problem is often collected in a table, as shown below for example.  
The number in each cell indicates the number of minutes required for a particular person to do a 
particular task.  The notation “n.a.” in a cell indicates that the associated person cannot do the 
task associated with the cell.  It’s not obvious how to assign the people to the tasks by simple 
inspection of the table.  For example, you may try looking at each task and simply choosing the 
best person for that task.  But as you can see, person A is the best for tasks 2, 3, and 4.  How 
should the tie be broken?  Other ad hoc procedures also soon run into trouble.  A more organized 
approach is needed. 

 task 1 task 2 task 3 task 4 
person A n.a. 9 7 13 
person B 16 13 8 n.a. 
person C 10 n.a. 6 15 
person D 11 n.a. 13 17 

Surprisingly, the assignment problem can be cast as a transportation problem!  Each person is 
modeled as a source node which introduces exactly one unit of flow into the network, and each 
task is modeled as a sink node which removes exactly one unit of flow from the network, as 
shown in Figure 10.4.  Each arc has the default upper and lower flow bounds, but the cost per 
unit of flow is set equal to the number of minutes for the person to do the job.  To avoid diagram 
clutter, each arc is labeled only with the cost per unit of flow. 

After the solution of the resulting network linear program, the flows in the arcs (i.e. the values of 
the variables in the linear program) will be known.  The flow in any arc will be exactly zero or 
exactly one.  Why?  Isn’t it possible to send fractional units of flow and still satisfy all of the 
source and sink relationships?  It’s because (i) the unimodularity property restricts the arc flows 
to integer values because all of the node equations have integer constants, and (ii) the sources 
and sink nodes in the model all have inflows or outflows of exactly one unit of flow.  Given this, 
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the optimal set of assignments is shown by the arcs that have a positive flow.  Each positive-flow 
arc indicates a person-to-task assignment that should be made.  The objective function value 
gives the minimum total time associated with this assignment. 
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Figure 10.4: The assignment problem cast as a transportation network. 
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forward variation of the assignment problem is the case in which there are more people 
  This is easy to handle simply by making each person the source of up to one unit of 
beling the phantom arc associated with each person as [0,1,0]. 

nsshipment Problem 

variation on the transportation problem in which shipping via intermediate nodes is 
In other words, not all of the nodes in the model are sources or sinks; some are simple 
erving nodes.  In addition, the sources and sinks may also transship flow.  As in the 
tion model, the nodes are assumed to have the default flow bounds.  A simple, partially 
nsshipment network is illustrated in Figure 10.5.  Node B is a source node that also 

ransshipment node, node G is a sink node that also acts as a transshipment node, nodes 
re pure transshipment nodes. 

rtest Route Problem 

or not, the shortest route problem, previously solved via Dijkstra’s algorithm, can also 
s a minimum cost network flow program, and therefore solved by extremely fast 
ow programming codes.  It’s just a matter of properly labeling the nodes and arcs and 
g the LP solution.  Here are the main points of the problem setup: 

eate the network diagram, 
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• Label each arc with a lower flow bound of zero, an upper flow bound of infinity, and a 
cost per unit flow equal to the length of the arc.  For example, an arc with a length of 12 
kilometers would be labelled [0, ∞, 12]. 

• Make the origin node a source of exactly one unit of flow, with no cost per unit of flow.  
The label on the phantom arc should be [1,1,0]. 

• Make the destination node a sink of exactly one unit of flow, with no cost per unit of 
flow.  The label on the phantom arc should be [1,1,0]. 
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Figure 10.5: An unlabeled transshipment network. 
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lution will assign flow to some arcs in the network, but not to other arcs.  Arcs having 
low will be on the shortest route.  In fact, if an arc has a positive flow, the flow value 
ctly one unit.  Why?  Because of the unimodularity property discussed earlier!  It’s a 
ow value in which all of the node equations have integer right hand side constants, 
etwork flows will all be integer.  But the integers can’t be any bigger than 1 because 

tations placed on the single source node and the single sink node, so all arc flows will 
 or 1.  And because of the minimum cost objective function, the LP will choose the 
 (i.e. shortest) route to connect the input flow at the origin source node to the output 
 destination sink node. 

no need to write or find an implementation of Dijkstra’s algorithm to solve a shortest 
em when you have a linear programming solver at hand. 

rtest Route Tree Problem 

ted to the shortest route problem, except that there is a single origin node, and many 
 of the other nodes in the network are destination nodes.  The problem is to find the 
ute from the origin node to every one of the destination nodes.  Of course, setting up 
 one shortest route problem for every destination node in the network can do this, but 

impler method that solves all of the shortest route problems simultaneously. 

 just a matter of properly labeling the nodes and arcs and interpreting the LP solution.  
e that there are n destination nodes.  Here are the main points of the problem setup: 
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• Create the network diagram, 

• Label each arc with a lower flow bound of zero, an upper flow bound of infinity, and a 
cost per unit flow equal to the length of the arc.  For example, an arc with a length of 12 
kilometers would be labelled [0, ∞, 12]. 

• Make the origin node a source of exactly n units of flow, with no cost per unit of flow.  
The label on the phantom arc should be [n, n, 0]. 

• Make each destination node a sink of exactly one unit of flow, with no cost per unit of 
flow.  The label on the phantom arc for each destination node should be [1,1,0]. 

Just as in the shortest route problem, the unimodularity property will permit only integer 
amounts of flow in an arc.  Some arcs will have no flow, and some will have a flow equal to 
some positive integer less than or equal to n, the maximum amount of flow introduced at the 
origin node.  If you mark the arcs that have a positive flow, then the marked arcs will form a tree 
on the diagram.  The shortest route from the origin to each destination node is actually 
discovered backwards: trace the route from the destination node back to the origin via marked 
nodes.  Because the marked arcs form a tree, there is only one shortest route for each destination 
node.  The routes to several destination nodes may share an arc, which is why the flow in some 
arcs may be greater than one. 

The Maximum Flow and Minimum Cut Problem 

This problem too can be solved by proper formulation as a minimum cost network flow model.  
The main points of the problem setup: 

• Create the network diagram, 

• Label each arc with a lower flow bound of zero, the upper flow bound associated with the 
arc, and a cost per unit flow of zero.  For example, an arc with an upper flow bound of 25 
litres per minute would be labelled [0, 25, 0]. 

• Make the origin node a possible source of a very large volume of flow, with no cost per 
unit of flow.  The label on the phantom arc should be [0, M, 0], where M represents a 
very large number. 

• Make each destination node a possible sink of a very large volume of flow, with a cost 
per unit of flow of -1.  The label on the phantom arc for the destination node should be 
[0, M, -1], where M again represents a very large number. 

Now what is the effect of this strange labeling?  Consider the destination node: it has a cost per 
unit of flow of –1.  Since the objective function will automatically attempt to minimize costs, it 
will try to get as much flow as possible out via the destination node in order to drive the cost 
function as negative as possible.  This is just like attaching a giant vacuum cleaner to the 
destination node, which attempts to suck as much flow as it can out of the network.  At the other 
end, the origin node will certainly permit a very large volume of flow to enter the network.  
However, what limits the total flow is the upper flow bounds on the arc, just as it did in the Ford 
and Fulkerson algorithm we looked at earlier. 
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Thus, the minimum cost network flow solution will provide the following information: 

• The flow out of the network at the destination node is the maximum total flow through 
the network. 

• The flows in the arcs show a flow pattern that will provide this maximum flow.  As usual, 
there may be other flow patterns that provide the same total flow. 

The minimum cut is found in exactly the same way as it was after solving the maximum flow 
problem via the Ford and Fulkerson algorithm: mark the arcs that are full to capacity, then find a 
cut that uses only marked arcs. 

A final question: what value should the M in the origin and destination nodes be set at?  It should 
be a value that is at least as big as the maximum flow, but as small as possible to avoid any 
numerical problems in the computer solution.  An easy way to find a suitable value is to take the 
cut-value for any random cut in the network diagram, because we know by the max-flow/min-cut 
theorem that the cut value will be greater than or equal to the maximum flow in the network. 

Generalized Networks 

In a generalized network, the arcs have gain factors.  This is a number that multiplies the flow 
entering an arc to yield the flow leaving the arc.  If all of the gain factors on all of the arcs are 
equal to 1, then this is a normal network.  Using gain factors allows you to model a wider range 
of phenomena.  For example, a gain factor of 0.9 might apply to a leaky pipe in a water network 
that loses 10% of its flow.  Can you think of a reason for having a gain factor that is greater than 
1?  Obviously this represents an increase in the amount of flow leaving the arc as compared to 
the amount of flow entering the arc. 

I asked this question to a graduate class some years back.  They thought for a while and finally a 
student ventured an answer: “Suppose the flow represented chickens being transported to market, 
and meanwhile the chickens were laying eggs and they were hatching, thereby creating more 
chickens…”.  Creative answer.  More realistically, a gain factor greater than 1 might be applied 
when the flow represents the value of an item, the arc represents the transportation of the item 
between two locations, and the item is worth more on arrival in the destination location. 

Gain factors of zero are not allowed.  Negative gain factors are allowed, but are not a good idea 
because they have the effect of reversing the flow at the head end of the arc, which destroys the 
intuitive meaning associated with the network diagram itself. 

There are specialized fast networks for solving networks with side constraints. 

Networks with Side Constraints 

Sometimes the model is almost completely a network, but there are additional constraints that 
simply cannot be expressed as network relationships.  For example, you may need to add a 
constraint like 13x1 – 0.5x2 + 12x3 ≥ 10 to your network model.  It’s easy to see that this is not a 
network constraint in this case because the coefficients are not all +1 or –1.  In a case like this 
you have a network with side constraints. 
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Networks with side constraints can of course be solved as ordinary general linear programs, but 
this sacrifices the solution speed that can be achieved for network models.  Fortunately, there are 
specialized solution methods for networks with side constraints, which are quite fast.  In fact, 
smart solvers will scan a model to see if it has network portions, and if it does, it may apply such 
specialized solvers.  Some of the specialized solution algorithms work by solving the network 
portions by the fast network solution algorithms and then stitching the network portion together 
with the non-network portion.  This is done numerous times in an iterative manner until the 
solutions for the two portions converge. 

Processing Networks 

Processing networks are extremely useful for modeling engineering systems, such as flows 
through factories.  A processing network has regular nodes (constrained only by the usual 
conservation of flow), and at least one processing node in which the flows in the incident arcs 
are further constrained to have fixed proportions of flows relative to each other.  For example, a 
processing node representing the energy flows in a large industrial boiler is shown in Figure 
10.6. The numbers in the figure represent the fixed proportions of the energy flows.  As you can 
see, the boiler is 80% efficient. 

Processing nodes are shown as small squares 
on a network diagram to distinguish them 
from regular nodes, which are shown as small 
circles.  If there are k incident arcs, then a 
processing node is represented by k-1 ratio 
equations.  For example, the processing node 
in Figure 10.6 is completely represented by 
the following 3 ratio equations: 

a/b = 1/0.01 ⇒ 0.01a – b = 0 

a/c = 1/0.21 ⇒ 0.21a – c = 0 

a/d = 1/0.8 ⇒ 0.8a – d = 0 

A complete model of a processing network is 
assembled by writing appropriate ratio equation
conservation equations for the regular nodes.  T
network flow objective function completes the m

As you can see, a processing network is nothing 
because of the ratio equations generated by the 
for networks with side constraints can then be use

In a flow-conserving processing network the sum
outflow proportions.  For example, in Figure 10.
outflow proportions. This guarantees flow will b
there are many cases where flow conservation 
across the various flows incident on a processin
Figure 10.7.  Here, the inflow proportions sum
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Figure 10.6: Processing node representation of an
industrial boiler. 
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hen the usual flow bounds and minimum cost 

odel. 

more than a network with side constraints added 
processing nodes.  The fast solution algorithms 
d. 

 of the inflow proportions equals the sum of the 
6, the inflow proportions sum to 1.01, as do the 
e conserved in the processing node.  However, 
will not hold, especially when the units differ 
g node, as in an assembly model as shown in 

 to 6, while the outflow proportions sum to 1.  
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However, this still simply defines a network model with side constraints, and so it can be solved 
by the usual methods. 

As you have seen in this chapter, network models are incredibly versatile modeling tools with an 
appealing intuitive mapping to the system under study. 
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Figure 10.7: Processing node representation of an 
automobile assembly process 
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